PRINCIPLES OF CHEMICAL KINETICS

Second Edition

James E. House
Illinois State University
and
Illinois Wesleyan University
Contents

1. **Some Fundamental Ideas of Kinetics**
 1.1 Rates of Reactions 2
 1.2 Dependence on Concentration 4
 1.2.1 First-Order 5
 1.2.2 Second-Order 8
 1.2.3 Zero-Order 10
 1.2.4 Nth-Order 13
 1.3 Cautions on Treating Kinetic Data 13
 1.4 Effect of Temperature 16
 1.5 Some Common Reaction Mechanisms 20
 1.5.1 Direct Combination 21
 1.5.2 Chain Mechanism 22
 1.5.3 Substitution Reaction 23
 1.6 Catalysis 27
 References for Further Reading 30
 Problems 31

2. **Kinetics of More Complex Systems**
 2.1 Second-Order Case, First-Order in Two Components 37
 2.2 Third-Order Reactions 43
 2.3 Parallel First-Order Reactions 45
 2.4 Series First-Order Reactions 47
 2.5 Series Reactions with Two Intermediates 53
 2.6 Reversible Reactions 58
 2.7 Autocatalysis 64
 2.8 Effect of Temperature 69
 References for Further Reading 75
 Problems 75

3. **Techniques and Methods** 79
4. Reactions in the Gas Phase 111

4.1 Collision Theory 111
4.2 The Potential Energy Surface 116
4.3 Transition State Theory 119
4.4 Unimolecular Decomposition of Gases 124
4.5 Free Radical or Chain Mechanisms 131
4.6 Adsorption of Gases on Solids 136
 4.6.1 Langmuir Adsorption Isoyterm 138
 4.6.2 B-E-T Isotherm 142
 4.6.3 Poisons and Inhibitors 143
4.7 Catalysis 145
References for Further Reading 147
Problems 148

5. Reactions in Solutions 153

5.1 The Nature of Liquids (HSIP) 153
 5.1.1 Intermolecular Forces 154
 5.1.2 The Solubility Parameter 159
 5.1.3 Solvation of Ions and Molecules 163
 5.1.4 The Hard-Soft Interaction Principle (HSIP) 165
6. Enzyme Catalysis

6.1 Enzyme Action
6.2 Kinetics of Reactions Catalyzed by Enzymes
 6.2.1 Michaelis-Menten Analysis
 6.2.2 Lineweaver-Burk and Eadie Analysis
6.3 Inhibition of Enzyme Action
 6.2.1 Competitive Inhibition
 6.2.2 Noncompetitive Inhibition
 6.2.3 Uncompetitive Inhibition
6.4 The Effect of pH
6.5 Enzyme Activation by Metal Ions
6.6 Regulatory Enzymes
References for Further Reading
Problems

7.1 Some General Considerations
7.2 Factors Affecting Reactions in Solids
7.3 Rate Laws for Reactions in Solids
 7.3.1 The Parabolic Rate Law
 7.3.2 The First-Order Rate Law
 7.3.3 The Contracting Sphere Rate Law
8. Nonisothermal Methods in Kinetics

8.1 TGA and DSC Methods
8.2 Kinetic Analysis by the Coats and Redfern Method
8.3 The Reich and Stivala Method
8.4 A Method Based on Three (?N,T) Data Pairs
8.5 A Method Based on Four (?N,T) Data Pairs
8.6 A Differential Method
8.7 A Comprehensive Nonisothermal Kinetic Method
8.8 The General Rate Law and A Comprehensive Method

References for Further Reading
Problems

9. Additional Applications of Kinetics

9.1 Radioactive Decay
9.1.1 Independent Isotopes
9.1.2 Parent-Doughter Cases
9.2 Mechanistic Implications of Orbital Symmetry
9.3 A Further Look at Solvent Polarity and Rates

References for Further Reading
Problems

INDEX