Introduction 1
Basic methods of powder production 1

Section 1 Powder Characterization and Testing 5

Chapter 1 Powder characterization and testing 7
Sampling of powders 7
Weight of sample 9
Particle size distribution analysis 9
Sieve analysis 9
Sedimentation methods 10
Accumulation of the sediment 12
Micromerographs 13
Turbidimetry 13
Method of weight samples 14
Light scattering 14
Surface and bulk characterization of powders 15
Particle image analysis 15
Size measurements 16
Particle shape 16
Optical microscopy 17
Data presentation 17
Metallographic microscope 18
Techniques of chemical analysis for powders 18
Scanning electron microscopy (SEM) 19
Auger electron spectroscopy 20
Secondary ion mass spectrometry (SIMS) analysis 20
Bulk analysis 21
X-ray powder diffraction (XRPD) 21
Inert gas fusion 22
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) 22
Atomic adsorption spectrometry (AAS) 22
Determination of oxygen content by reduction methods 24
Surface area and porosity of powders 24
Gas adsorption 24
Permeametry 26
Picnometry 28
Porosimetry 29
Surface tension of mercury 30
Restrictions and limitations 30
Surface area determination 30
Hysteresis and detained mercury 31
Standardization 31
Bubble test of pore size 31
Bulk properties of powders 31
Bulk flow parameters 32
Cohesive strength 32
Frictional properties 33
Bulk density 35
Section 2 Powder Production Methods 45

Chapter 2 Mechanical crushing and grinding 47
Principles of grinding 47
Grindability 51
Hardgrove grindability index (ASTM D409 Standard) 52
Bong's Work Index (JIS M4002 Standard) 52
Crushing and grinding equipment 52
Crushers 53
Grinding techniques 53
Ball-medium types 53
Tumbling ball mills 54
Cylindrical ball mills 55
Conical ball mills 55
Rod mills 56
Planetary mills 56
Vibratory ball mills 56
Vibrating grinders 57
Medium agitating mills 58
Jet mills 60
Other high-energy milling methods 61
References 62

Chapter 3 Mechanical alloying 63
Mechanical alloying process 63
Milling equipment 64
Planetary ball mills 65
Shaker mills 65
Attritors 66
Commercial tumbling ball mills 67
Safety engineering 67
Mechanical alloying fundamentals 67
Oxide dispersion strengthened (ODS) alloys 69
Contact displacement reactions 70
Soluble-gas-atomization process
Ultrasonic gas atomization
Hot gas atomization
Liquefied gas atomization
Centrifugal atomization
Models of centrifugal atomization
Centrifugal atomization methods
Spinning disc atomization
Rapid solidification rate (RSR) process
Melt spinning roller technique
Rotating electrode atomization
Other methods
Impact atomization
Vibrating electrode atomization
Melt drop orifice technique
Impulse atomization method
Melt drop vibrating orifice method
Pulsated orifice ejection method
Roller atomization
Plasma atomization process
Vacuum-dynamic atomization
Granulation
Spray granulation
Spray drying
Control of powder properties
Water granulation
Atomization techniques
Applications
References
Selected references

Chapter 6 **Gas-phase method of metal powder production**
143
The theoretical basis of the gas-phase method
143
Mechanisms of powder formation during vapor condensation
144
Peculiarities of the formation of alloy powders
148
Principles of the controlled condensation process and the technique of powder production
149
Properties of powders and areas of their usage
152
References
153

Chapter 7 **Carbonyl method of metal powder production**
154
Chemical precipitation
154
Preparation of metal carbonyls
154
Theoretical basis of the synthesis
154
Preparation of the starting materials for carbonyl production
157
Synthesis of carbonyls
157
Extraction, purification and separation of carbonyls
158
Manufacture of powders by thermal decomposition of metal carbonyls
158
Physico-chemical basis of the process
158
The technique of powder manufacture
159
Manufacture of composite powders
160
Section 3 Processing of Powders and Processing Equipment

Chapter 11 Processing of powders and processing equipment

Dehydration
Thickening in cyclones
Conical and cylindrical thickeners
Filtration
Centrifugation
Cartridge vacuum filter
Rotary disk filter
Filter press
Thermal drying
Introductory conceptions and objectives
Water content
Drying characteristic curve
Drying rate
Dryer selection and design
Pneumatic convective dryer
Spray drying
Conveclive dryer with fluidized bed
Shaker dryer
Shaker infrared dryer
Drum contact dryer
Vacuum dryers
Powder classification by size
Sieving methods
Sieving apparatus
Round vibrating sifters
Air-assisted sieving machine
Air separation
Hydraulic classification
Mixing
Powder mixers
Rotary vessel type
Stationary vessel type
Complex type and others
Mechanism of powder mixing
Convective mixing
Shear mixing
Diffusive mixing
Statistical analysis of the mixing
Passivating techniques 255
Passivation methods 257
Hydrophobization 258
Nitriding and oxide formation 258
Microencapsulation 259
Proportioning, packaging and inter-stage transport 260
Proportioning 260
Packaging 261
Inter-stage transport 262
References 263

Section 5 Production of Non-Ferrous Metal Powders 265

Chapter 12 Production of aluminum and aluminum alloy powders 267
Gas atomization 268
Production of granules 271
Production of flake, pigments and pastes 275
Mechanical milling of aluminum and its alloys 275
The main application fields for aluminum and aluminum alloy powders 279
Nickel-clad aluminum powders 281
Typical physical properties of nickel-clad aluminum powders 282
Processing of aluminum scrap into powder products 282
Production of powder products from waste aluminum foil 282
Processing of recycled aluminum to granules 282
References 283

Chapter 13 Advanced aluminum alloy powders 284
Mechanical alloying 284
Rapid solidification process 287
Centrifugal atomization 292
RSR process 292
Spinning cup water granulation process 293
Water atomization 296
Spray forming 304
Other technologies 309
References 310

Chapter 14 Production of titanium and titanium alloy powders 314
Chemical reduction 314
Sodium reduction method 314
Magnesium reduction Method 317
Calcium hydride reduction process 317
Plasma-rotating electrode process (PREP) 317
Gas atomization 318
Hydrogenation/dehydrogenation (HDH) process 318
Amalgam metallurgy technique 318
Electrolysis of titanium compounds 319
Electrolytic refining of titanium 319
Other methods 320
Method of disproportionation of lower titanium halogenides 320
Mechanical alloying 321
Applications 321
Chapter 15 Production of magnesium and magnesium alloy powders

- Mechanical crushing
- Melt atomization
- Gas-phase method
- Production of magnesium granules

Chapter 16 Production of copper and copper alloy powders

- Atomization
- Commercial processes
- Copper powders
- Copper alloy powders
- Brasses
- Bronzes
- Irregular Cu-Pb-Sn powders
- Nickel silvers
- Production of copper powder by solid phase reduction of copper oxide
- Oxidation of copper powder
- Reduction of copper oxide
- Production of copper and copper alloy powders by electrolysis
- Electrodeposition of copper powders
- Results of electrolyte composition
- Results of processing conditions
- Powder production
- Properties of electrolytic copper powders
- Applications
- Production of copper powder by hydrometallurgical processing
- Leaching
- Reduction processes
- Copper precipitation from sulfuric acid media
- Copper precipitation from ammonia media
- Copper precipitation from organic phase
- Anhydride process
- Cementation
- Electrowinning
- Oxide dispersion strengthened (ODS) copper powder production
- Manufacture
- Properties
- Applications
- Applications of copper and copper-base powders
- Workplace atmosphere safely

Chapter 17 Production of nickel and nickel-alloy powders

- Carbonyl process of nickel powder production
- Nickel tefracarbonyl formation and decomposition
- Commercial technique
- Low pressure carbonyl technique
- Average pressure carbonyl technique
<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Production of cobalt and cobalt-alloy powders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrometallurgical process</td>
<td>399</td>
</tr>
<tr>
<td>Leach autoclave method</td>
<td>399</td>
</tr>
<tr>
<td>Solid phase reduction</td>
<td>402</td>
</tr>
<tr>
<td>Atomization</td>
<td>403</td>
</tr>
<tr>
<td>Carbonyl processing</td>
<td>404</td>
</tr>
<tr>
<td>Electrolytic method</td>
<td>405</td>
</tr>
<tr>
<td>Amalgam techniques</td>
<td>406</td>
</tr>
<tr>
<td>Other hydrometallurgical methods</td>
<td>406</td>
</tr>
<tr>
<td>References</td>
<td>408</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>Production of zinc, cadmium and their alloy powders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of zinc powders</td>
<td>409</td>
</tr>
<tr>
<td>Evaporation-condensation method</td>
<td>409</td>
</tr>
<tr>
<td>Inert gas condensation</td>
<td>412</td>
</tr>
<tr>
<td>Melt atomization</td>
<td>413</td>
</tr>
<tr>
<td>Electrochemical method</td>
<td>414</td>
</tr>
<tr>
<td>Other methods</td>
<td>414</td>
</tr>
<tr>
<td>Zinc powder size classification</td>
<td>415</td>
</tr>
<tr>
<td>Properties of zinc powder</td>
<td>416</td>
</tr>
<tr>
<td>Safety measures in zinc powder production and handling</td>
<td>416</td>
</tr>
<tr>
<td>Production of cadmium powders</td>
<td>417</td>
</tr>
<tr>
<td>Production of cadmium and zinc alloy powders</td>
<td>418</td>
</tr>
<tr>
<td>Applications</td>
<td>418</td>
</tr>
<tr>
<td>Zinc powders in protective zinc-rich coatings</td>
<td>420</td>
</tr>
<tr>
<td>Anticorrosive zinc-rich coatings for roll and sheet steel and metal ware</td>
<td>420</td>
</tr>
<tr>
<td>Sherardizing (thermo-diffusion galvanizing)</td>
<td>421</td>
</tr>
<tr>
<td>Mechanical plating</td>
<td>422</td>
</tr>
</tbody>
</table>
References

Chapter 20 Production of noble metal powders

Production of silver powders
Chemical processes
Atomization
Mechanical comminution processes
Production of silver powder from solution by electrolysis
Production of silver powder by chemical reduction with electrochemical regeneration of the reducer
Production of fibrous dendritic silver residue from molten electrolytes
Production of gold powders
Production of platinum-group powders
Powders of platinum metals
Chemical reduction
The carbonyl process
Autoclave precipitation
Production of powders of alloys based on noble metals
Production of platinum black deposit (Niello)
Synthesis of palladium nanoparticles by methods of zone electrochemistry

References

Chapter 21 Production of refractory metal powders

Production of tungsten and tungsten carbide powders
Tungsten metal powder
Production of tungsten powder by hydrogen reduction
Feed to process
Process
Other tungsten powder production methods
Reduction by solid carbon
Precipitation from gaseous phase of tungsten hexafluoride and tungsten hexachloride
Production of powder by a plasma process
Amalgam method
Carbonyl technique
Properties
Tungsten powder applications
Recovery of metallic tungsten
Accident prevention when working with the powder
Tungsten carbide powder
Production
Properties and applications
Hard metals
Production of grade powders
Powder consolidation
Sintering and post-sintering operations
Other applications
Hardfacing
Electrical contacts
Diamond tools
Physical and chemical properties
Chapter 22 Production of rare metal powders

Vanadium
Workplace atmosphere safety
Zirconium
Reduction of potassium hexachlorozirconate by sodium
Reduction by calcium or calcium hydrate
Production of zirconium powders by electrolysis
Amalgam method
Combustion synthesis of zirconium nitrides
Workplace atmosphere safety
Indium
Workplace atmosphere safety
Thallium
Workplace atmosphere safety
Ruthenium
Workplace atmosphere safety
Production of rare earth metal-alloy powders
Physicochemical properties
Physical properties
Chemical properties
Sources of raw material
Methods of RE elements separation
Separation of RE by extraction
RE separation by ion-exchange chromatography
Schemes of complete separation
Production of RE powders
Initial compounds for metals production
Production of chlorides
Production of fluorides
Chapter 23
Production of powders of lead, tin, bismuth and their alloys
Atomization
Lead powder production
Section 5 Safety Engineering in the Production of Powders 549

Chapter 24 Safety engineering in the production of powders 551
Dangerous and harmful manufacturing factors 551
Dust gaseous and vapor emissions 551
Properties of powders 552
Adhesion 552
Hygroscopicity and wettability 553
Abrasiveness 553
Ambient noise and vibration 553
Heat radiation 553
Electrostatic electricity 553
Inflammability and explosivity of powders 554
Thermophysical properties 555
Workplace atmosphere limited powder threshold values 558
Techniques for the prevention of exposure to hazards 560
Common demands to production area, equipment and processes 560
For preventing exposure 561
For controlling exposure hazards 561
Explosion and fire safety 562
Quenching means 563
Isolation of powder-gas emissions 564
Ejection pressure pe 566
Overpressure in closed chambers 567
Pressure created by equipment moving parts 568
Heat pressure pt 569
Pressure pmt - mass transfer result 569
Capacity of local suctions 570
Aspiration in combustible powder conditions 570
Melt atomization units 571
Grinding units 572
Definition of the local exhaust capacity 572
Aspiration during particulate material reloading in closed gravity chutes 572
Example of the computation 580
Solution 580
Discharge of containers 581
Single rotary hammer mills 582
Determination of the basic calculated magnitudes 582
Water treatment 586
Mechanical treatment methods 586
Chemical treatment methods 586
Ion-exchange method 588
Sorption, evaporation and flotation methods 589
Sorption Method 589
Evaporation Method 590
Flotation Method 590
<table>
<thead>
<tr>
<th>Dust and gas cleaning</th>
<th>590</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste products utilization, Storing and Transportation</td>
<td>592</td>
</tr>
<tr>
<td>Waste utilization</td>
<td>592</td>
</tr>
<tr>
<td>Storing and transportation of hazardous powders</td>
<td>593</td>
</tr>
<tr>
<td>References</td>
<td>594</td>
</tr>
</tbody>
</table>

Appendix 1	Methods of powder characterization and testing	597
Appendix 2	Metal powder specifications	599
Appendix 3	Abbreviations and symbols	601

Index 609